博客
关于我
集成学习:Boosting
阅读量:798 次
发布时间:2023-04-16

本文共 682 字,大约阅读时间需要 2 分钟。

Boosting 算法概述

Boosting 是一种强大的集成学习技术,通过组合多个弱分类器构建强模型。其核心思想是逐步优化模型性能,针对前一步的错误进行纠正,从而提升整体预测精度。Boosting 方法广泛应用于分类和回归任务,成为机器学习领域的重要组成部分。

基本原理

Boosting 的训练过程通常分为几个关键步骤:

1. 弱学习器

Boosting 通常使用简单的弱学习器,如小型决策树(决策桩)。这些弱学习器在训练数据上的表现通常略好于随机猜测,但其能力远不及强学习器。

2. 迭代训练

训练过程遵循以下几个步骤:

2.1 初始化

为每个训练样本分配相等的初始权重。

2.2 训练弱学习器

基于加权数据训练弱学习器,每轮生成一个模型并计算其预测错误率。

2.3 更新权重

根据模型预测结果调整样本权重:被误分类样本权重增加,正确分类样本权重降低。

2.4 组合学习器

将各个弱学习器按照其准确率作为权重组合,形成最终模型。

2.5 迭代训练

重复上述过程,直到达到预定的弱学习器数量或满足性能要求为止。

常见Boosting算法

以下是几种常见的Boosting 算法及其特点:

AdaBoost

Adaptive Boosting(AdaBoost)是一种基于样本权重的Boosting 算法,其特点包括:

• 自适应调整样本权重,优先纠正错误预测;

• 每轮训练一个弱学习器,权重更新基于预测误差;

• 组合多个模型,提升整体预测性能。

AdaBoost 通常用于分类任务,能够显著提升模型的准确率和鲁棒性,是Boosting家族中的经典算法之一。

转载地址:http://ckgfk.baihongyu.com/

你可能感兴趣的文章
mysql5.7安装
查看>>
mysql5.7性能调优my.ini
查看>>
MySQL5.7新增Performance Schema表
查看>>
Mysql5.7深入学习 1.MySQL 5.7 中的新增功能
查看>>
Webpack 之 basic chunk graph
查看>>
Mysql5.7版本单机版my.cnf配置文件
查看>>
mysql5.7的安装和Navicat的安装
查看>>
mysql5.7示例数据库_Linux MySQL5.7多实例数据库配置
查看>>
Mysql8 数据库安装及主从配置 | Spring Cloud 2
查看>>
mysql8 配置文件配置group 问题 sql语句group不能使用报错解决 mysql8.X版本的my.cnf配置文件 my.cnf文件 能够使用的my.cnf配置文件
查看>>
MySQL8.0.29启动报错Different lower_case_table_names settings for server (‘0‘) and data dictionary (‘1‘)
查看>>
MYSQL8.0以上忘记root密码
查看>>
Mysql8.0以上重置初始密码的方法
查看>>
mysql8.0新特性-自增变量的持久化
查看>>
Mysql8.0注意url变更写法
查看>>
Mysql8.0的特性
查看>>
MySQL8修改密码报错ERROR 1819 (HY000): Your password does not satisfy the current policy requirements
查看>>
MySQL8修改密码的方法
查看>>
Mysql8在Centos上安装后忘记root密码如何重新设置
查看>>
Mysql8在Windows上离线安装时忘记root密码
查看>>